Lattice calculation of proton decay matrix element

Eigo Shintani (Mainz)

collaborated with Y. Aoki, A. Soni (RBC/UKQCD collaboration)

Lattice Meets Experiment 2013: Beyond the Standard Model Dec 5-6, 2013, Brookhaven National Laboratory, USA

Plan

Introduction

- Matrix element of proton decay
- Lattice calculation and new technique
- Preliminary results in high precision
- Summary

Proton decay: smoking gun of NP

Baryon number violation in the SM

via anomaly, B(and L) violation is very rare event ('tHooft 1976):

$$\Delta B = \Delta L = 2$$
: $\tau(d \rightarrow e^+ v_{\mu}) \sim 10^{120}$ years,

$$\Delta B = \Delta L = 3$$
: $\tau(^{3}He \rightarrow e^{+} \nu_{\tau} \nu_{\mu}) \sim 10^{150} \text{ years}$

- baryons excess (not anti-baryon) in the universe
- ▶ (SUSY-) GUTs
 - Coupling unification
 - Proton decay
- Experiments
 - $\tau(pe^+\pi^0) > 8.2 \times 10^{33} \text{ years}$
 - $\tau(pv K^+) > 2.3 \times 10^{33} \text{ years}$

Nishino et al. (Super-Kamiokande), PRD85, I I 200 I (20 I 2), Kobayashi et al. (Super-Kamiokande), PRD72, 052007 (2005)

Motivation

- To increase the confidence level of bound of proton lifetime
 - account non-perturbative ingredients from GUT scale to QCD (< Λ_{QCD})

Decay rate is contributed from squared of matrix element

$$\Gamma_{p \to \pi^0 e^+} = \frac{m_p}{32\pi} \left[1 - \left(\frac{m_e}{m_p} \right)^2 \right]^2 \left| \sum_i C_i W_0^i(p \to \pi^0) \right|^2$$

Motivation

- To increase the confidence level of bound of proton lifetime
 - account non-perturbative ingredients from GUT scale to QCD (< Λ_{QCD})

Decay rate is contributed from squared of matrix element

$$\Gamma_{p \to \pi^0 e^+} = \frac{m_p}{32\pi} \left[1 - \left(\frac{m_e}{m_p} \right)^2 \right]^2 \left| \sum_i C_i W_0^i(p \to \pi^0) \right|^2$$

- To remove the theoretical uncertainties
 - The QCD effect in the matrix element is one of the main uncertainties.
 - Most GUTs predictions have been based on BChPT, and there are also unknown LECs and higher order effect.

LECs α (also β) are also estimated from lattice QCD.

Y.Aoki et al. (RBC-UKQCD), PRD78,054505 (2008)

Lattice QCD is able to determine W₀ without relying on BChPT!

BV effective operators at low-energy

Dimension-6 operator

$$\mathcal{L}_{\mathrm{GUT}} \simeq \mathcal{L}_{\mathrm{SM}} + \sum_{i} C_{i}(\mu) O_{i}(\mu) / \Lambda_{\mathrm{GUT}}^{2}$$
"i" labels chirality (Γ) and flavor (q,l)

C_i:Wilson coefficients depending on type of GUT models.

B violating operators

$$\begin{array}{lll} \mathcal{O}^{1}_{abcd} &=& (D^{i}_{a}, U^{j}_{b})_{R} (q^{k\,\alpha}_{c}, l^{\beta}_{d})_{L} \varepsilon^{ijk} \varepsilon^{\alpha\beta}, & \qquad & : (\mathsf{q},\mathsf{q})_{\mathsf{R}} \, (\mathsf{q},\mathsf{l})_{\mathsf{L}} \\ \mathcal{O}^{2}_{abcd} &=& (q^{i\,\alpha}_{a}, q^{j\,\beta}_{b})_{L} (U^{k}_{c}, l_{d})_{R} \varepsilon^{ijk} \varepsilon^{\alpha\beta}, & \qquad & : (\mathsf{q},\mathsf{q})_{\mathsf{L}} \, (\mathsf{q},\mathsf{l})_{\mathsf{R}} \\ \widetilde{\mathcal{O}}^{4}_{abcd} &=& (q^{i\,\alpha}_{a}, q^{j\,\beta}_{b})_{L} (q^{k\,\gamma}_{c}, l^{\delta}_{d})_{L} \varepsilon^{ijk} \varepsilon^{\alpha\delta} \varepsilon^{\beta\gamma}, & \qquad & : (\mathsf{q},\mathsf{q})_{\mathsf{L}} \, (\mathsf{q},\mathsf{l})_{\mathsf{L}} \\ \mathcal{O}^{5}_{abcd} &=& (D^{i}_{a}, U^{j}_{b})_{R} (U^{k}_{c}, l_{d})_{R} \varepsilon^{ijk} & \qquad & : (\mathsf{q},\mathsf{q})_{\mathsf{R}} \, (\mathsf{q},\mathsf{l})_{\mathsf{R}} \end{array}$$

a,b,c,d: generation, $\alpha,\beta,\gamma,\delta$: SU(2) indices, i,j,k: color indices

Weinberg, PRL43, 1566 (1979), Wilczek and Zee, PRL43, 1571 (1979)

2. Matrix element of proton decay

Hadronic effect in proton decay

Kinematics in decaying into PS meson and lepton

Aoki et al. (JLQCD), PRD62, 014506 (2000); Aoki et al. (RBC), PRD75, 014507 (2007)

 W_0 at physical point $(q^2 = m_1^2 = 0)$ is relevant to proton decay matrix element.

2. Matrix element of proton decay

How to obtain W₀ from lattice QCD

The "indirect" method

Measurements of low-energy constant in BChPT at LO:

$$W_0^{LR}(p \to \pi^0) \simeq \alpha (1 + D + F) / \sqrt{2} f_0,$$

where D and F is given by experiment, and α is LECs given by 2-pt function:

$$\langle 0|((ud)_R u_L)J_p|0\rangle = \alpha P_L u_p$$

Claudson, et al., NPB195 (1982) 297

S.Aoki et al. (JLQCD), PRD62, 014506 (2000), Y. Aoki et al. (RBC), PRD75, 014507 (2007), Y. Aoki et al. (RBC-UKQCD), PRD78, 054505 (2008)

Easy calculation, BUT has systematic error due to higher order of ChPT

2. Matrix element of proton decay

How to obtain W₀ from lattice QCD

The "indirect" method

Measurements of low-energy constant in BChPT at LO:

$$W_0^{LR}(p \to \pi^0) \simeq \alpha (1 + D + F) / \sqrt{2} f_0,$$

where D and F is given by experiment, and α is LECs given by 2-pt function:

$$\langle 0| ((ud)_R u_L) J_p | 0 \rangle = \alpha P_L u_p$$

Claudson, et al., NPB195 (1982) 297

S.Aoki et al. (JLQCD), PRD62, 014506 (2000), Y. Aoki et al. (RBC), PRD75, 014507 (2007), Y. Aoki et al. (RBC-UKQCD), PRD78, 054505 (2008)

Easy calculation, BUT has systematic error due to higher order of ChPT

The "direct" method

- Measurement of matrix element extracted from 3-pt function.
- ▶ Rather expensive, while there is no uncertainty depending on models.
- Provides each channels of decay mode.

S Aoki et al. (JLQCD), PRD62,014506 (2000), Y. Aoki et al. (RBC), PRD75, 014507 (2007), Y. Aoki, A. Soni, ES, 1304.7424

Lattice QCD

Monte Carlo simulation

Theoretically rigorous calculation including quark-gluon dynamics

- Lattice fermion
 - Require "realistic" fermion for the precise calculation
 - Wilson-clover and staggered fermions may have large lattice artifacts (cut-off effect, operator mixing ...)
 - Domain-wall (and also overlap fermion) is even better.
- Domain-Wall fermion (DWF)

[Blum Soni, (97), CP-PACS(99), RBC(00), RBC/UKQCD. (05 --)]

- Setting 5th dimension, its size L_s
- Chiral fermion are localized on boundaries \Rightarrow Chiral symmetry (if $L_s \rightarrow \infty$).
- Good chiral sym. and its breaking effect is suppressed as $am_{res} \sim exp(-L_s)$.

RBC/UKQCD efforts

▶ RBC(2007)

Y. Aoki et al. (RBC), PRD75, 014507 (2007)

- "Direct"/"indirect" method in Quench DW
- Comparison between "direct" and "indirect" method
- Non-perturbative renormalization (NPR)

RBC/UKQCD efforts

RBC(2007)

Y. Aoki et al. (RBC), PRD75, 014507 (2007)

- "Direct"/"indirect" method in Quench DW
- Comparison between "direct" and "indirect" method
- Non-perturbative renormalization (NPR)
- ▶ RBC/UKQCD(2008)

Y. Aoki et al. (RBC-UKQCD), PRD78, 054505 (2008)

- "Indirect" method in Nf=2+1 QCD with dynamical DW
- ► NPR

RBC/UKQCD efforts

RBC(2007)

Y.Aoki et al.(RBC), PRD75, 014507 (2007)

- "Direct"/"indirect" method in Quench DW
- Comparison between "direct" and "indirect" method
- Non-perturbative renormalization (NPR)
- ► RBC/UKQCD(2008)

Y. Aoki et al. (RBC-UKQCD), PRD78, 054505 (2008)

- "Indirect" method in Nf=2+1 QCD with dynamical DW
- NPR
- ▶ RBC/UKQCD(2013)

Y.Aoki, A. Soni, ES, 1304.7424, appears in PRD

- "Direct" method in Nf=2+1 QCD with dynamical DW
- NPR
- Estimate of all systematic errors
- This work
 - High precision using AMA

Error reduction techniques

Blum, Izubuchi, ES, PRD88 (2013), ES (lattice 2012)

- Covariant approximation averaging (CAA)
 - \triangleright For original correlator O, (unbiased) improved estimator is defined as

$$\mathcal{O}^{(\text{imp})} = \mathcal{O}^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} \mathcal{O}^{(\text{appx}),g}, \quad \mathcal{O}^{(\text{rest})} = \mathcal{O} - \mathcal{O}^{(\text{appx})}$$

- <O> = <O(imp) > if approximation has covariance under lattice symmetry g
- Improved error $\operatorname{err}^{\operatorname{imp}} \simeq \operatorname{err}/\sqrt{N_G}$
- Computational cost of O^(imp) is cheap.

Error reduction techniques

Blum, Izubuchi, ES, PRD88 (2013), ES (lattice 2012)

- Covariant approximation averaging (CAA)
 - \triangleright For original correlator O, (unbiased) improved estimator is defined as

$$\mathcal{O}^{(\text{imp})} = \mathcal{O}^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} \mathcal{O}^{(\text{appx}),g}, \quad \mathcal{O}^{(\text{rest})} = \mathcal{O} - \mathcal{O}^{(\text{appx})}$$

- <O> = <O(imp) > if approximation has covariance under lattice symmetry g
- Improved error $\operatorname{err}^{\operatorname{imp}} \simeq \operatorname{err}/\sqrt{N_G}$
- Computational cost of O^(imp) is cheap.
- All-mode-averaging (AMA)
 - Relaxed CG solution for approximation

$$\mathcal{O}^{(\text{appx})} = \mathcal{O}[S_l], S_l = \sum_{\lambda=1}^{N_{\lambda}} v_{\lambda} v_{\lambda}^{\dagger} \frac{1}{\lambda} + P_n(\lambda)|_{|\lambda| > N_{\lambda}}$$

- ▶ $P_n(λ)$ is polynomial approximation of I/λ
 - Low mode part :# of eigen mode
 - Mid-high mode : degree of poly.

3. Lattice calculation and new technique Lattice parameters in this work

DWFs Nf=2+1

- ▶ $24^3 \times 64$ size at $a^{-1} = 1.73$ GeV $\Rightarrow 2.5$ fm³ box size
- Light quark mass m=0.005,0.01,0.02 (m_{π} = 0.3 -- 0.6 GeV)
- > Strange quark mass $m_s = 0.04$ ($m_K = 0.5$ GeV)
- 5^{th} dimension, $L_s = 16$ in which $am_{res} = 0.003$, which means that there is good chiral symmetry on the lattice.
- NPR of BV operators at μ =2GeV Y.Aoki et al. (RBC-UKQCD), PRD78,054505 (2008)
- ▶ APE + Gaussian smeared source and sink.
- Three sorts of momentum $n_p=(1,0,0), (1,1,0), (1,1,1)$
- ► AMA
 - 3×10^{-3} precision of truncated solver in N_G = 32 source locations Low-mode deflation (300 lowmodes) in light quark, but strange part is only using truncated solver.

W₀ from 3-pt function

- (PS meson)-(BV operator)-(Nucleon)
- Location of operators which relies on signal region

$$t_{sep} = 22:t=5(PS) \text{ and } 27(p),$$

 $t_{sep} = 18:t=5(PS) \text{ and } 23(p).$

- Comparison is good check of excited state contamination
- Ratio of 3-pt and 2-pt

Comparison with different t_{sep}

Check of excited state contamination

Working on AMA

- Comparison with AMA, t_{sep}
 - Blue filled 200 configs. \times 2 src = 400 meas. t_{sep} = 22
 - Blue circle 100 configs. with AMA, $N_G = 32$ $t_{sep} = 22$
 - Red squared 100 configs. with AMA, $N_G = 32$ $t_{sep} = 18$

Statistical error can be reduced to 1/5 and more for $t_{sep} = 18$ in AMA.

Extrapolation into physical kinematics

Linear function in extrapolation

$$F_{W_0} = A_0 + A_1 \tilde{m}_{ud} + A_2 q^2$$

 $A_{0,1,2}$ are free parameters for simultaneous fitting.

Lattice data is good fitted with linear func. $\chi^2/\text{dof} \sim 1--2$

At physical point $(q^2 = 0)$, which gives $W_0 = A_0$

Comparison with previous results

Quench and "indirect" method

Comparison with previous results

- red bar: only stat. error in this work, blue bar: sys. + stat. error in 1304.7424.
- Stat. error reduction to factor 5--6 and more by using $t_{sep} = 18$ with AMA.

BChPT and lattice results

cyan line: lattice results red line: BChPT at LO

BChPT in LO at -q²

$$W_0(p \to \pi^0)$$

 $\simeq \frac{\beta}{\sqrt{2} f_0} \left[1 - (D + F) \frac{-q^2 + m_N^2}{-q^2 - m_N^2} \right]$

Error of BChPT is coming from LECs computed in lattice QCD: $\beta = 0.0120(13)(23) \text{ GeV}^3$

Y. Aoki et al. (RBC-UKQCD), PRD78, 054505 (2008)

From low to high q² region, discrepancy becomes bigger.

give important suggestion for induced N decay scenario etc.

Davoudias, et al. PRL105(2010), PRD84(2011)

Summary

- Perform the lattice calculation precisely using AMA.
- Statistical error is less than 10% (factor three improvement from previous work).
- Linear function for q^2 and m is good fitting with lattice data.
- ▶ Lattice result is compatible to BChPT at q²=0, but in high q² there may be significant discrepancy.
- ▶ Estimate of systematic error (finite size, ...) is under way.
- Simulation in physical point gives final results (in near future).

Thank you for your attention.

Backup

Comparison of α

In model calculation, there are model dependence on α , β which is about $0005 - 0.03 \text{ GeV}^3$. For p decay, this is factor 10 difference.

 α (GeV³)

Results of each channels

Error budgets

- 12 principal channels
- Statistical error.
- χ: Chiral extrapolation
 + Finite Volume.
- $O(a^2)$: Lattice artifacts
- ΔZ , Δa^{-1} : error of NPR, lattice spacing
- Pion channel: 30% stat. and sys. error
- Keon channel: 10--20 % for stat. error, 5--10 % sys error

matrix element	$W_0(\mu = 2 \text{GeV}) \text{ GeV}^2$	χ	$\mathcal{O}(a^2)$	ΔZ	Δa^{-1}
$\langle \pi^0 (ud)_R u_L p \rangle$	-0.103 (23) (34)	0.033	0.005	0.008	0.004
$\langle \pi^0 (ud)_L u_L p \rangle$	0.133 (29) (28)	0.026	0.007	0.011	0.005
$\langle K^0 (us)_R u_L p\rangle$	0.098 (15) (12)	0.007	0.005	0.008	0.003
$\langle K^0 (us)_L u_L p\rangle$	0.042 (13) (8)	0.007	0.002	0.003	0.001
$\langle K^+ (us)_R d_L p\rangle$	-0.054 (11) (9)	0.008	0.003	0.004	0.002
$\langle K^+ (us)_L d_L p\rangle$	0.036 (12) (7)	0.007	0.002	0.003	0.001
$\langle K^+ (ud)_R s_L p\rangle$	-0.093 (24) (18)	0.016	0.005	0.008	0.003
$\langle K^+ (ud)_L s_L p\rangle$	0.111 (22) (16)	0.012	0.006	0.009	0.004
$\langle K^+ (ds)_R u_L p\rangle$	-0.044 (12) (5)	0.003	0.002	0.004	0.002
$\langle K^+ (ds)_L u_L p\rangle$	-0.076 (14) (9)	0.006	0.004	0.006	0.003
$\langle \eta (ud)_R u_L p \rangle$	0.015 (14) (17)	0.017	0.001	0.001	0.001
$\langle \eta (ud)_L u_L p \rangle$	0.088 (21) (16)	0.014	0.004	0.007	0.003

sytematic error budget

Induced N decay scenario

DM scattering induces the proton decay

Davoudias, et al. PRL105(2010), PRD84(2011)

- DM has baryon number, $n_{\Phi} + n_{\Psi} = -1$
- These masses are roughly estimated as $m_{\Phi} = m_{\Psi} = 2$ --3 GeV
- PS meson is energetic, whose momentum is around I GeV $p_{\pi} \sim 0.8 \text{ GeV}, p_{K} \sim p_{\eta} \sim 0.7 \text{ GeV}$
- $q^2 \sim 0.6 \text{ GeV}^2$ (pi), $\sim 0.45 \text{ GeV}^2$ (K, η)
- In this region, BChPT at LO is not appropriate, because higher order correction should be significant.